1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
use super::{Frame, RequestId, Transport};
use super::advanced::{Multiplex, MultiplexMessage};

use BindServer;
use streaming::{Message, Body};
use tokio_service::Service;
use futures::{Future, Poll, Async};
use futures::{IntoFuture, Stream};
use futures::future::Executor;
use std::io;

/// A streaming, multiplexed server protocol.
///
/// The `T` parameter is used for the I/O object used to communicate, which is
/// supplied in `bind_transport`.
///
/// For simple protocols, the `Self` type is often a unit struct. In more
/// advanced cases, `Self` may contain configuration information that is used
/// for setting up the transport in `bind_transport`.
///
/// ## Considerations
///
/// There are some difficulties with implementing back pressure in the case
/// that the wire protocol does not support a means by which backpressure can
/// be signaled to the peer.
///
/// The problem is the potential for deadlock:
///
/// - The server is busy processing requests on this connection, and stops
/// reading frames from its transport.
///
/// - Meanwhile, the processing logic is blocked waiting for another frame that
/// is currently pending on the socket.
///
/// To deal with this, once the connection's frame buffer is filled, a timeout
/// is set. If no further frames are able to be read before the timeout expires,
/// the connection is killed.
pub trait ServerProto<T: 'static>: 'static {
    /// Request headers.
    type Request: 'static;

    /// Request body chunks.
    type RequestBody: 'static;

    /// Response headers.
    type Response: 'static;

    /// Response body chunks.
    type ResponseBody: 'static;

    /// Errors, which are used both for error frames and for the service itself.
    type Error: From<io::Error> + 'static;

    /// The frame transport, which usually take `T` as a parameter.
    type Transport:
        Transport<Self::RequestBody,
                  Item = Frame<Self::Request, Self::RequestBody, Self::Error>,
                  SinkItem = Frame<Self::Response, Self::ResponseBody, Self::Error>>;

    /// A future for initializing a transport from an I/O object.
    ///
    /// In simple cases, `Result<Self::Transport, Self::Error>` often suffices.
    type BindTransport: IntoFuture<Item = Self::Transport, Error = io::Error>;

    /// Build a transport from the given I/O object, using `self` for any
    /// configuration.
    fn bind_transport(&self, io: T) -> Self::BindTransport;
}

impl<P, T, B> BindServer<super::StreamingMultiplex<B>, T> for P where
    P: ServerProto<T>,
    T: 'static,
    B: Stream<Item = P::ResponseBody, Error = P::Error>,
{
    type ServiceRequest = Message<P::Request, Body<P::RequestBody, P::Error>>;
    type ServiceResponse = Message<P::Response, B>;
    type ServiceError = P::Error;

    fn bind_server<S, E>(&self, executor: &E, io: T, service: S)
        where S: Service<Request = Self::ServiceRequest,
                         Response = Self::ServiceResponse,
                         Error = Self::ServiceError> + 'static,
              E: Executor<Box<Future<Item = (), Error = ()>>>
    {
        let task = self.bind_transport(io).into_future().and_then(|transport| {
            let dispatch: Dispatch<S, T, P> = Dispatch {
                service: service,
                transport: transport,
                in_flight: vec![],
            };
            Multiplex::new(dispatch)
        }).map_err(|_| ());

        // Spawn the multiplex dispatcher
        executor.execute(Box::new(task))
            .expect("failed to spawn server onto executor")
    }
}

struct Dispatch<S, T, P> where
    T: 'static, P: ServerProto<T>, S: Service
{
    // The service handling the connection
    service: S,
    transport: P::Transport,
    in_flight: Vec<(RequestId, InFlight<S::Future>)>,
}

enum InFlight<F: Future> {
    Active(F),
    Done(Result<F::Item, F::Error>),
}

/// The total number of requests that can be in flight at once.
const MAX_IN_FLIGHT_REQUESTS: usize = 32;

impl<P, T, B, S> super::advanced::Dispatch for Dispatch<S, T, P> where
    P: ServerProto<T>,
    B: Stream<Item = P::ResponseBody, Error = P::Error>,
    S: Service<Request = Message<P::Request, Body<P::RequestBody, P::Error>>,
               Response = Message<P::Response, B>,
               Error = P::Error>,
{
    type Io = T;
    type In = P::Response;
    type BodyIn = P::ResponseBody;
    type Out = P::Request;
    type BodyOut = P::RequestBody;
    type Error = P::Error;
    type Stream = B;
    type Transport = P::Transport;

    fn transport(&mut self) -> &mut P::Transport {
        &mut self.transport
    }

    fn poll(&mut self) -> Poll<Option<MultiplexMessage<Self::In, B, Self::Error>>, io::Error> {
        trace!("Dispatch::poll");

        let mut idx = None;

        for (i, &mut (request_id, ref mut slot)) in self.in_flight.iter_mut().enumerate() {
            trace!("   --> poll; request_id={:?}", request_id);
            if slot.poll() && idx.is_none() {
                idx = Some(i);
            }
        }

        if let Some(idx) = idx {
            let (request_id, message) = self.in_flight.remove(idx);
            let message = MultiplexMessage {
                id: request_id,
                message: message.unwrap_done(),
                solo: false,
            };

            Ok(Async::Ready(Some(message)))
        } else {
            Ok(Async::NotReady)
        }
    }

    fn dispatch(&mut self, message: MultiplexMessage<Self::Out, Body<Self::BodyOut, Self::Error>, Self::Error>) -> io::Result<()> {
        assert!(self.poll_ready().is_ready());

        let MultiplexMessage { id, message, solo } = message;

        assert!(!solo);

        if let Ok(request) = message {
            let response = self.service.call(request);
            self.in_flight.push((id, InFlight::Active(response)));
        }

        // TODO: Should the error be handled differently?

        Ok(())
    }

    fn poll_ready(&self) -> Async<()> {
        if self.in_flight.len() < MAX_IN_FLIGHT_REQUESTS {
            Async::Ready(())
        } else {
            Async::NotReady
        }
    }

    fn cancel(&mut self, _request_id: RequestId) -> io::Result<()> {
        // TODO: implement
        Ok(())
    }
}

/*
 *
 * ===== InFlight =====
 *
 */

impl<F> InFlight<F>
    where F: Future,
{
    // Returns true if done
    fn poll(&mut self) -> bool {
        let res = match *self {
            InFlight::Active(ref mut f) => {
                trace!("   --> polling future");
                match f.poll() {
                    Ok(Async::Ready(e)) => Ok(e),
                    Err(e) => Err(e),
                    Ok(Async::NotReady) => return false,
                }
            }
            _ => return true,
        };

        *self = InFlight::Done(res);
        true
    }

    fn unwrap_done(self) -> Result<F::Item, F::Error> {
        match self {
            InFlight::Done(res) => res,
            _ => panic!("future is not ready"),
        }
    }
}